Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 789
Filtrar
1.
Proteins ; 92(1): 44-51, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37553948

RESUMO

The activation or inactivation of B-cell lymphoma-2 (Bcl-2) antagonist/killer (Bak) is critical for controlling mitochondrial outer membrane permeabilization-dependent apoptosis. Its pro-apoptotic activity is controlled by intermolecular interactions with the Bcl-2 homology 3 (BH3) domain, which is accommodated in the hydrophobic pocket of Bak. Bcl-2-interacting protein 5 (Bnip5) is a noncanonical BH3 domain-containing protein that interacts with Bak. Bnip5 is characterized by its controversial effects on the regulation of the pro-apoptotic activity of Bak. In the present study, we determined the crystal structure of Bak bound to Bnip5 BH3. The intermolecular association appeared to be typical at first glance, but we found that it is maintained by tight hydrophobic interactions together with hydrogen/ionic bonds, which accounts for their high binding affinity with a dissociation constant of 775 nM. Structural analysis of the complex showed that Bnip5 interacts with Bak in a manner similar to that of the Bak-activating pro-apoptotic factor peroxisomal testis-enriched protein 1, particularly in the destabilization of the intramolecular electrostatic network of Bak. Our structure is considered to reflect the initial point of drastic and consecutive conformational and stoichiometric changes in Bak induced by Bnip5 BH3, which helps in explaining the effects of Bnip5 in regulating Bak-mediated apoptosis.


Assuntos
Proteínas Proto-Oncogênicas c-bcl-2 , Proteína Killer-Antagonista Homóloga a bcl-2 , Proteínas Proto-Oncogênicas c-bcl-2/química , Proteína Killer-Antagonista Homóloga a bcl-2/química , Proteína Killer-Antagonista Homóloga a bcl-2/metabolismo , Domínios Proteicos , Proteína bcl-X/metabolismo , Proteína Agonista de Morte Celular de Domínio Interatuante com BH3/metabolismo , Apoptose/fisiologia
2.
Comput Biol Med ; 167: 107657, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37931525

RESUMO

Apoptosis is regulated by the BCL-2 family, which includes the anti-apoptotic and pro-apoptotic proteins (Bax, Bok, Bak, etc.). These proteins often interact in dimers and act as apoptotic switches. Anti-apoptotic proteins, such as BCL-2, block the functions of these pro-apoptotic proteins. The pro-apoptotic and anti-apoptotic protein-protein interactions must be inhibited to prevent tumor cells from escaping apoptosis. This method has been used to develop anticancer drugs by inhibiting BCL-2 with both natural and synthetic compounds. Metal-containing compounds were used as pharmaceuticals for human cancer patients for a long time, and cisplatin was the first candidate of this class. Drug design, however, needs to pay more attention to metal complexes. We have studied the X-ray crystal structure of the BCL-2 protein in detail and identified the hydrophobic nature of the site with two less solvent-accessible sites. Based on the hydrophobic nature of the compounds, 74 organometallic compounds with X-ray crystallographically characterized bioactivity (including anticancer activity) were selected from the Cambridge crystallographic database. For testing, molecular docking was used to determine which compound was most effective against the BCL-2 protein. Organometallic compounds (benzene)-chloro-(1-{[(9H-fluoren-2-yl)imino]methyl}naphthalen-2-olato)-ruthenium (2), (1-((1,1'-biphenyl)-4-yl)-2,3,4,5-tetramethylcyclopentadienyl)-chloro-(4,4'-dimethyl-2,2'-bipyridine)-rhodium hexafluorophosphate (37), (µ-1,1'-(butane-1,4-diyl)bis(3-oxy-2-methylpyridin-4(1H)-one))-dichloro-bis(pentamethyl-cyclopentadienyl)-di-rhodium tetrahydrate (46), (µ-1,1'-(butane-1,4-diyl)bis(3-oxy-2-methylpyridin-4(1H)-one))-dichloro-bis(pentamethyl-cyclopentadienyl)-di-iridium (47) etc are found to be important compounds in this study. The capability of different types of complex interactions was identified using Hirshfeld surface analysis of the complexes. A NCI plot was conducted to understand the nature of the interaction between complex amino acids and active-site amino acids. A DFT study was conducted to examine the stability and chemical reactivity of the selected complexes. Using this study, one suitable hydrophobic lead anti-cancer organometallic pharmaceutical was found that binds at the less solvent-accessible hydrophobic site of BCL-2.


Assuntos
Compostos Organometálicos , Ródio , Humanos , Proteína X Associada a bcl-2/metabolismo , Simulação de Acoplamento Molecular , Proteínas Proto-Oncogênicas c-bcl-2/química , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Reguladoras de Apoptose/química , Proteínas Reguladoras de Apoptose/metabolismo , Apoptose/fisiologia , Compostos Organometálicos/farmacologia , Aminoácidos , Solventes , Butanos
3.
Biochemistry ; 62(11): 1619-1630, 2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-37192192

RESUMO

The structurally conserved B-cell lymphoma 2 (Bcl-2) family of protein function to promote or inhibit apoptosis through an exceedingly complex web of specific, intrafamilial protein-protein interactions. The critical role of these proteins in lymphomas and other cancers has motivated a widespread interest in understanding the molecular mechanisms that drive specificity in Bcl-2 family interactions. However, the high degree of structural similarity among Bcl-2 homologues has made it difficult to rationalize the highly specific (and often divergent) binding behavior exhibited by these proteins using conventional structural arguments. In this work, we use time-resolved hydrogen deuterium exchange mass spectrometry to explore shifts in conformational dynamics associated with binding partner engagement in the Bcl-2 family proteins Bcl-2 and Mcl-1. Using this approach combined with homology modeling, we reveal that Mcl-1 binding is driven by a large-scale shift in conformational dynamics, while Bcl-2 complexation occurs primarily through a classical charge compensation mechanism. This work has implications for understanding the evolution of internally regulated biological systems composed of structurally similar proteins and for the development of drugs targeting Bcl-2 family proteins for promotion of apoptosis in cancer.


Assuntos
Proteínas Reguladoras de Apoptose , Proteínas Proto-Oncogênicas c-bcl-2 , Proteínas Proto-Oncogênicas c-bcl-2/química , Proteína de Sequência 1 de Leucemia de Células Mieloides/química , Ligação Proteica , Apoptose
4.
Structure ; 31(3): 265-281.e7, 2023 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-36706751

RESUMO

Apoptosis is important for development and tissue homeostasis, and its dysregulation can lead to diseases, including cancer. As an apoptotic effector, BAK undergoes conformational changes that promote mitochondrial outer membrane disruption, leading to cell death. This is termed "activation" and can be induced by peptides from the human proteins BID, BIM, and PUMA. To identify additional peptides that can regulate BAK, we used computational protein design, yeast surface display screening, and structure-based energy scoring to identify 10 diverse new binders. We discovered peptides from the human proteins BNIP5 and PXT1 and three non-native peptides that activate BAK in liposome assays and induce cytochrome c release from mitochondria. Crystal structures and binding studies reveal a high degree of similarity among peptide activators and inhibitors, ruling out a simple function-determining property. Our results shed light on the vast peptide sequence space that can regulate BAK function and will guide the design of BAK-modulating tools and therapeutics.


Assuntos
Proteínas Reguladoras de Apoptose , Proteínas Proto-Oncogênicas , Humanos , Proteínas Proto-Oncogênicas/química , Proteínas Reguladoras de Apoptose/química , Proteína 11 Semelhante a Bcl-2 , Proteína bcl-X/metabolismo , Proteína Killer-Antagonista Homóloga a bcl-2/química , Proteína Killer-Antagonista Homóloga a bcl-2/metabolismo , Apoptose/fisiologia , Peptídeos , Proteína X Associada a bcl-2/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/química
5.
J Biomol Struct Dyn ; 41(13): 6074-6088, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35869651

RESUMO

The interaction between the anti-apoptotic Bcl-2 protein and its antagonist Bax is essential to the regulation of the mitochondrial pathway of apoptosis. For this work, we built models by homology of Bcl-2 full-sequence length in monomeric form (apo-Bcl-2) and in complex with the BH3 domain of Bax (holo-Bcl-2). The Bcl-2 protein was analyzed with its transmembrane domain anchored to a lipidic bilayer of DPPC, imitating physiological conditions. We performed molecular dynamics (MD) simulations using the GROMACS program. Conformational changes showed that the flexible loop domain (FLD) tends to fold on itself and move towards the main core. Furthermore, the BH3 peptide of pro-apoptotic protein Bax, showed an allosteric stabilizing effect on FLD upon being bound to the hydrophobic cleft of the anti-apoptotic protein Bcl-2, causing a reduction in its structural flexibility. However, FLD is distal from the main core of Bcl-2. Principal component analysis (PCA) showed a weak correlation between FLD residues and BH3 peptide from Bax. Upon MD simulations, several new contacts appeared between FLD and some α-helices of the core of Bcl-2, which contribute to maintaining the stability of Bcl-2. This knowledge sheds light on the behavior of Bcl-2 in the cell's native environment.Communicated by Ramaswamy H. Sarma.


Assuntos
Proteínas Reguladoras de Apoptose , Simulação de Dinâmica Molecular , Proteínas Reguladoras de Apoptose/química , Proteína X Associada a bcl-2/química , Proteínas Proto-Oncogênicas c-bcl-2/química , Apoptose , Conformação Proteica
6.
Phys Chem Chem Phys ; 24(28): 17105-17115, 2022 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-35791860

RESUMO

The BCL-XL protein is among the most important members of the anti-apoptotic subfamily of the BCL-2 protein family, and is currently a promising new target for anti-tumor drug research. However, the BCL-XL/2 proteins have similar structures and functions, which could lead to undesirable side effects because of inhibitors that can bind to both BCL-XL and BCL-2. Therefore, it is crucial to expound on the structural basis of the selective mechanism towards BCL-XL/2 inhibition. In the current study, we employed hybrid computational methods including molecular docking and dynamics simulation, MM/GBSA energy calculation, alanine scanning mutagenesis and Hirshfeld surface analysis to comprehensively reveal the selectivity mechanism towards BCL-XL/2 from multiple perspectives, revealing the significant effects of the BCL-XL residues SER106 and LEU108 as well as the BCL-2 residue ASP103 on the inhibitory selectivity. Overall, our findings provide useful references for the rational design of BCL-XL/2 selective inhibitors with better affinity.


Assuntos
Antineoplásicos , Proteínas Proto-Oncogênicas c-bcl-2 , Antineoplásicos/química , Apoptose , Simulação de Acoplamento Molecular , Proteínas Proto-Oncogênicas c-bcl-2/química , Proteína bcl-X/química
7.
Biochem Soc Trans ; 50(3): 1091-1103, 2022 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-35521828

RESUMO

Apoptosis is a common cell death program that is important in human health and disease. Signaling in apoptosis is largely driven through protein-protein interactions. The BCL-2 family proteins function in protein-protein interactions as key regulators of mitochondrial poration, the process that initiates apoptosis through the release of cytochrome c, which activates the apoptotic caspase cascade leading to cellular demolition. The BCL-2 pore-forming proteins BAK and BAX are the key executors of mitochondrial poration. We review the state of knowledge of protein-protein and protein-lipid interactions governing the apoptotic function of BAK and BAX, as determined through X-ray crystallography and NMR spectroscopy studies. BAK and BAX are dormant, globular α-helical proteins that participate in protein-protein interactions with other pro-death BCL-2 family proteins, transforming them into active, partially unfolded proteins that dimerize and associate with and permeabilize mitochondrial membranes. We compare the protein-protein interactions observed in high-resolution structures with those derived in silico by AlphaFold, making predictions based on combining experimental and in silico approaches to delineate the structural basis for novel protein-protein interaction complexes of BCL-2 family proteins.


Assuntos
Proteínas Proto-Oncogênicas c-bcl-2 , Proteína Killer-Antagonista Homóloga a bcl-2 , Apoptose/fisiologia , Humanos , Lipídeos , Proteínas Proto-Oncogênicas c-bcl-2/química , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteína Killer-Antagonista Homóloga a bcl-2/química , Proteína Killer-Antagonista Homóloga a bcl-2/metabolismo , Proteína X Associada a bcl-2/química , Proteína X Associada a bcl-2/metabolismo
8.
Proteins ; 90(9): 1699-1713, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35429048

RESUMO

Myeloid cell leukemia-1 (MCL1), an anti-apoptotic BCL-2 family protein plays a major role in the control of apoptosis as the regulator of mitochondrial permeability which is deregulated in various solid and hematological malignancies. Interaction of the executioner proteins Bak/Bax with anti-apoptotic MCL1 and its cellular composition determines the apoptotic or survival pathway. Mutations act at various levels in the apoptotic process and can contribute to disease. Single nucleotide polymorphism (SNP) in MCL1 gene was focused as they result in changes in the amino acid sequence and have been associated with tumorigenesis. This study highlighted the deleterious MCL1-Bax stabilizing effect of the mutation V220F on MCL1 structure through computational protein-protein interaction predictions and molecular dynamics simulations. The single point mutation at V220F was selected as it is residing at the hydrophobic core region of BH3 conserved domain, the site of Bax binding. The molecular dynamics simulation studies showed increase in stability of the mutated MCL1 before and after Bax binding comparable with the native MCL1. The clusters from free energy landscape found out structural variation in folding pattern with additional helix near the BH3 domain in the mutated structure. This loop to helix structural change in the mutated complex favored stable interaction of the complex and also induced Bax conformational change. Moreover, molecular mechanics-based binding free energy calculations confirmed increased affinity of Bax toward mutated MCL1. Residue-wise interaction network analysis showed the individual residues in Bax binding responsible for the change in stability and interaction due to the protein mutation. In conclusion, the overall findings from the study reveal that the presence of V220F mutation on MCL1 is responsible for the structural confirmational change leading to disruption of its biological functions which might be responsible for tumorigenesis. The mutation could possibly be used as future diagnostic markers in treating cancers.


Assuntos
Proteína de Sequência 1 de Leucemia de Células Mieloides , Proteína X Associada a bcl-2 , Apoptose/genética , Carcinogênese , Sobrevivência Celular , Humanos , Mutação , Proteína de Sequência 1 de Leucemia de Células Mieloides/química , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Proteínas Proto-Oncogênicas c-bcl-2/química , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteína X Associada a bcl-2/química , Proteína X Associada a bcl-2/genética
9.
J Cell Biochem ; 123(2): 390-405, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34791695

RESUMO

Glioblastoma is the most common and destructive brain tumor with increasing complexity. Flavonoids are versatile natural compounds with the approved anticancer activity, which could be considered as a potential treatment for glioblastoma. A quantitative structure-activity relationship (QSAR) can provide adequate data for understanding the role of flavonoids structure against glioblastoma. The IC50 of various flavonoids for the U-87 cell line was used to prepare an adequate three-dimensional QSAR (3D-QSAR) model. The validation of the model was carried out using some statistical parameters such as R2 and Q2 . Based on the QSAR model, the activities of other marketed and newly designed flavonoids were predicted. Molecular docking study and molecular dynamics (MD) simulation were conducted for better recognition of the interactions between the most active compounds and Bcl-2 family proteins. Moreover, an AMDE/T analysis was performed for the most active flavonoids. A reliable 3D-QSAR was performed with R2 and Q2 of 0.91 and 0.82. The molecular docking study revealed that BCL-XL has a higher binding affinity with the most active compounds, and the MD simulation showed that some residues of the BH3 domain, such as Phe97, Tyr101, Arg102, and Phe105 create remarkable hydrophobic interactions with the ligands. ADME/T analysis also showed the potential of the active compounds for further investigation. 3D-QSAR study is a beneficial method to evaluate and design anticancer compounds. Considering the results of the molecular docking study, MD simulation, and ADME/T analysis, the designed compound 54 could be considered as a potential treatment for glioblastoma.


Assuntos
Sistemas de Liberação de Medicamentos , Flavonoides/química , Glioblastoma/química , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Proteínas Proto-Oncogênicas c-bcl-2 , Flavonoides/farmacologia , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Humanos , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-bcl-2/química , Relação Quantitativa Estrutura-Atividade
10.
Int J Mol Sci ; 22(23)2021 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-34884964

RESUMO

Genomic DNA methylation is involved in many diseases and is expected to be a specific biomarker for even the pre-symptomatic diagnosis of many diseases. Thus, a rapid and inexpensive detection method is required for disease diagnosis. We have previously reported that cytosine methylation in G-quadruplex (G4)-forming oligonucleotides develops different G4 topologies. In this study, we developed a method for detecting CpG methylation in G4-forming oligonucleotides based on the structural differences between methylated and unmethylated G4 DNAs. The differences in G4 topologies due to CpG methylation can be discriminated by G4 ligands. We performed a binding assay between methylated or unmethylated G4 DNAs and G4 ligands. The binding abilities of fluorescent G4 ligands to BCL-2, HRAS1, HRAS2, VEGF G4-forming sequences were examined by fluorescence-based microtiter plate assay. The differences in fluorescence intensities between methylated and unmethylated G4 DNAs were statistically significant. In addition to fluorescence detection, the binding of G4 ligand to DNA was detected by chemiluminescence. A significant difference was also detected in chemiluminescence intensity between methylated and unmethylated DNA. This is the first study on the detection of CpG methylation in G4 structures, focusing on structural changes using G4 ligands.


Assuntos
Ilhas de CpG , Metilação de DNA , DNA/metabolismo , Quadruplex G , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , DNA/química , Humanos , Ligantes , Proteínas Proto-Oncogênicas c-bcl-2/química , Proteínas Proto-Oncogênicas p21(ras)/química , Fator A de Crescimento do Endotélio Vascular/química
11.
Nat Commun ; 12(1): 6896, 2021 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-34824248

RESUMO

PROteolysis-TArgeting Chimeras (PROTACs) have emerged as an innovative drug development platform. However, most PROTACs have been generated empirically because many determinants of PROTAC specificity and activity remain elusive. Through computational modelling of the entire NEDD8-VHL Cullin RING E3 ubiquitin ligase (CRLVHL)/PROTAC/BCL-xL/UbcH5B(E2)-Ub/RBX1 complex, we find that this complex can only ubiquitinate the lysines in a defined band region on BCL-xL. Using this approach to guide our development of a series of ABT263-derived and VHL-recruiting PROTACs, we generate a potent BCL-xL and BCL-2 (BCL-xL/2) dual degrader with significantly improved antitumor activity against BCL-xL/2-dependent leukemia cells. Our results provide experimental evidence that the accessibility of lysines on a target protein plays an important role in determining the selectivity and potency of a PROTAC in inducing protein degradation, which may serve as a conceptual framework to guide the future development of PROTACs.


Assuntos
Antineoplásicos/farmacologia , Leucemia/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteína bcl-X/metabolismo , Antineoplásicos/química , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Humanos , Leucemia/tratamento farmacológico , Leucemia/genética , Lisina/química , Lisina/genética , Lisina/metabolismo , Modelos Moleculares , Complexo de Endopeptidases do Proteassoma/metabolismo , Ligação Proteica , Conformação Proteica , Proteólise , Proteínas Proto-Oncogênicas c-bcl-2/química , Proteínas Proto-Oncogênicas c-bcl-2/genética , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Enzimas de Conjugação de Ubiquitina/química , Enzimas de Conjugação de Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Proteína Supressora de Tumor Von Hippel-Lindau/química , Proteína Supressora de Tumor Von Hippel-Lindau/genética , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo , Proteína bcl-X/química , Proteína bcl-X/genética
12.
Nutrients ; 13(11)2021 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-34836315

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease characterized by excessive fat accumulation in the liver. The aim of this study is to elucidate the multi-target mechanism of polyphenols in blueberry leaves (PBL) on NAFLD by network pharmacology and to validate its results via biological experiments. Twenty constituents in PBL were preliminarily determined by liquid chromatography-tandem mass spectrometry. Subsequently, 141 predicted drug targets and 1226 targets associated with NAFLD were retrieved from public databases, respectively. The herb-compound-target network and the target protein-protein interaction network (PPI) were established through Cytoscape software, and four compounds and 53 corresponding targets were identified. Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment were performed to explore the biological processes of the predicted genes. The results of cell experiments demonstrated that PBL could significantly improve the viability of the NAFLD cell model, and the protein expressions of caspase-3 and Bcl-2 were consistent with the expected mechanism of action of PBL. Those results systematically revealed that the multi-target mechanism of PBL against NAFLD was related to the apoptosis pathway, which could bring deeper reflections into the hepatoprotective effect of PBL.


Assuntos
Apoptose/efeitos dos fármacos , Mirtilos Azuis (Planta) , Farmacologia em Rede , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Polifenóis/uso terapêutico , Mirtilos Azuis (Planta)/química , Caspase 3/genética , Caspase 3/metabolismo , Ontologia Genética , Células Hep G2 , Humanos , Metabolismo dos Lipídeos , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/fisiopatologia , Ácido Palmítico/farmacologia , Fitoterapia , Folhas de Planta/química , Polifenóis/farmacologia , Mapas de Interação de Proteínas , Proteínas Proto-Oncogênicas c-bcl-2/química , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo
13.
Cell Rep ; 37(6): 109979, 2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34758330

RESUMO

Small-cell lung cancer (SCLC), an aggressive neuroendocrine malignancy, has limited treatment options beyond platinum-based chemotherapy, whereafter acquired resistance is rapid and common. By analyzing expression data from SCLC tumors, patient-derived models, and established cell lines, we show that the expression of TIAM1, an activator of the small GTPase RAC1, is associated with a neuroendocrine gene program. TIAM1 depletion or RAC1 inhibition reduces viability and tumorigenicity of SCLC cells by increasing apoptosis associated with conversion of BCL2 from its pro-survival to pro-apoptotic function via BH3 domain exposure. This conversion is dependent upon cytoplasmic translocation of Nur77, an orphan nuclear receptor. TIAM1 interacts with and sequesters Nur77 in SCLC cell nuclei and TIAM1 depletion or RAC1 inhibition promotes Nur77 translocation to the cytoplasm. Mutant TIAM1 with reduced Nur77 binding fails to suppress apoptosis triggered by TIAM1 depletion. In conclusion, TIAM1-RAC1 signaling promotes SCLC cell survival via Nur77 nuclear sequestration.


Assuntos
Biomarcadores Tumorais/metabolismo , Regulação Neoplásica da Expressão Gênica , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/química , Carcinoma de Pequenas Células do Pulmão/patologia , Proteína 1 Indutora de Invasão e Metástase de Linfoma de Células T/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Animais , Apoptose , Biomarcadores Tumorais/genética , Proliferação de Células , Feminino , Perfilação da Expressão Gênica , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/genética , Conformação Proteica , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Carcinoma de Pequenas Células do Pulmão/genética , Carcinoma de Pequenas Células do Pulmão/metabolismo , Proteína 1 Indutora de Invasão e Metástase de Linfoma de Células T/genética , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto , Proteínas rac1 de Ligação ao GTP/genética
14.
J Mol Model ; 27(11): 317, 2021 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-34633547

RESUMO

B-cell lymphoma/leukemia gene-2(Bcl-2) protein family known for regulating cell cycle arrest and subsequent cell death is highly expressed in a variety of cancers. Among them, the Bcl-xL and Bcl-2 are two essential proteins in the Bcl-2 family. In the present work, the differences in binding modes as between the two proteins and two ligands ABT-263/43b were investigated and compared. And the computational alanine scanning combined with the recently developed interaction entropy (AS-IE) method was employed for predicting their binding free energies and finding those amino acids that were more critical during the binding process. The result showed that the binding free energy calculated by the AS-IE method was more in line with experimental values than the molecular mechanics/Poisson-Boltzmann surface area (MM/PBSA) method. Besides, no significant difference was found between Bcl-xL and ABT-263/43b in the binding free energy, which Bcl-xL showed slightly weaker binding free energy to 43b because of the fewer number of key residues with interactions. Nonetheless, compared with the Bcl-2 and 43b complex, the Bcl-2 and ABT-263 system had greater number of key residues interacting with ABT-263, in particular, contribute favorably, resulting in a stronger binding ability for the Bcl-2 and ABT-263 systems. The van der Waals and hydrogen bond contributions were significant in the four protein-ligand complexes. Overall, Tyr108 was found to be the common key residues in the Bcl-xL-ligand complex, while Tyr105, Glu100, and Glu143 were established as the common key residue in the Bcl-2-ligand systems. We hope that the predicted hot spot residues and their energy distributions can guide the design of peptide and small-molecule drugs targeting Bcl-xL and Bcl-2.


Assuntos
Compostos de Anilina/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/química , Sulfonamidas/farmacologia , Termodinâmica , Proteína bcl-X/química , Compostos de Anilina/química , Entropia , Humanos , Ligação de Hidrogênio/efeitos dos fármacos , Ligantes , Simulação de Dinâmica Molecular , Ligação Proteica , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Sulfonamidas/química , Proteína bcl-X/antagonistas & inibidores
15.
EMBO J ; 40(20): e107159, 2021 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-34523144

RESUMO

Permeabilization of the outer mitochondrial membrane by pore-forming Bcl2 proteins is a crucial step for the induction of apoptosis. Despite a large set of data suggesting global conformational changes within pro-apoptotic Bak during pore formation, high-resolution structural details in a membrane environment remain sparse. Here, we used NMR and HDX-MS (Hydrogen deuterium exchange mass spectrometry) in lipid nanodiscs to gain important high-resolution structural insights into the conformational changes of Bak at the membrane that are dependent on a direct activation by BH3-only proteins. Furthermore, we determined the first high-resolution structure of the Bak transmembrane helix. Upon activation, α-helix 1 in the soluble domain of Bak dissociates from the protein and adopts an unfolded and dynamic potentially membrane-bound state. In line with this finding, comparative protein folding experiments with Bak and anti-apoptotic BclxL suggest that α-helix 1 in Bak is a metastable structural element contributing to its pro-apoptotic features. Consequently, mutagenesis experiments aimed at stabilizing α-helix 1 yielded Bak variants with delayed pore-forming activity. These insights will contribute to a better mechanistic understanding of Bak-mediated membrane permeabilization.


Assuntos
Lipossomos/química , Lipídeos de Membrana/química , Proteínas Proto-Oncogênicas c-bcl-2/química , Proteína Killer-Antagonista Homóloga a bcl-2/química , Proteína bcl-X/química , Sítios de Ligação , Clonagem Molecular , Medição da Troca de Deutério , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Humanos , Cinética , Lipossomos/metabolismo , Lipídeos de Membrana/metabolismo , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Dobramento de Proteína , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Termodinâmica , Proteína Killer-Antagonista Homóloga a bcl-2/genética , Proteína Killer-Antagonista Homóloga a bcl-2/metabolismo , Proteína bcl-X/genética , Proteína bcl-X/metabolismo
16.
EMBO J ; 40(20): e107237, 2021 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-34523147

RESUMO

BAK and BAX, the effectors of intrinsic apoptosis, each undergo major reconfiguration to an activated conformer that self-associates to damage mitochondria and cause cell death. However, the dynamic structural mechanisms of this reconfiguration in the presence of a membrane have yet to be fully elucidated. To explore the metamorphosis of membrane-bound BAK, we employed hydrogen-deuterium exchange mass spectrometry (HDX-MS). The HDX-MS profile of BAK on liposomes comprising mitochondrial lipids was consistent with known solution structures of inactive BAK. Following activation, HDX-MS resolved major reconfigurations in BAK. Mutagenesis guided by our HDX-MS profiling revealed that the BCL-2 homology (BH) 4 domain maintains the inactive conformation of BAK, and disrupting this domain is sufficient for constitutive BAK activation. Moreover, the entire N-terminal region preceding the BAK oligomerisation domains became disordered post-activation and remained disordered in the activated oligomer. Removal of the disordered N-terminus did not impair, but rather slightly potentiated, BAK-mediated membrane permeabilisation of liposomes and mitochondria. Together, our HDX-MS analyses reveal new insights into the dynamic nature of BAK activation on a membrane, which may provide new opportunities for therapeutic targeting.


Assuntos
Lipossomos/química , Lipídeos de Membrana/química , Proteínas Proto-Oncogênicas c-bcl-2/química , Proteína Killer-Antagonista Homóloga a bcl-2/química , Animais , Sítios de Ligação , Clonagem Molecular , Medição da Troca de Deutério , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Humanos , Cinética , Lipossomos/metabolismo , Lipídeos de Membrana/metabolismo , Camundongos , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Dobramento de Proteína , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Termodinâmica , Proteína Killer-Antagonista Homóloga a bcl-2/genética , Proteína Killer-Antagonista Homóloga a bcl-2/metabolismo
17.
SAR QSAR Environ Res ; 32(10): 769-792, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34530651

RESUMO

The hybrid method of the Electron-Conformational Genetic Algorithm (EC-GA) was used to determine the pharmacophore groups and to estimate anticancer activity in isatin derivatives using a robust 4D-QSAR software (EMRE). To build the model, each compound is represented by a set of conformers rather than a single conformation. The Electron Conformational Matrix of Congruity (ECMC) is composed via EMRE software. Electron Conformational Submatrix of Activity (ECSA) was calculated by the comparison of these matrices. Genetic algorithm was used to select important variables to predict theoretical activity. The model with the best seven parameters produced satisfactory results. The E statistics technique was applied to the generated EC-GA model to evaluate the individual contribution of each of the descriptors on biological activity. The r2 and q2 values of the training set compounds were found to be 0.95 and 0.93, respectively. Because no previous 4D-QSAR studies on isatin derivatives have been conducted, this study is important in the development of new isatin derivatives. In this study, 27 isatin derivatives whose activities were estimated using the hybrid EC-GA method were also investigated through molecular docking and molecular dynamics simulations for their BCL-2 inhibitory activity.


Assuntos
Antineoplásicos/farmacologia , Isatina/análogos & derivados , Isatina/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/química , Relação Quantitativa Estrutura-Atividade , Antineoplásicos/química , Isatina/química , Conformação Molecular , Simulação de Acoplamento Molecular , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores
18.
ACS Appl Mater Interfaces ; 13(18): 21108-21118, 2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-33942607

RESUMO

Chronic lymphocytic leukemia (CLL) is still incurable by conventional chemotherapy due to the resistance to apoptosis. We have previously found that a peptide-capped gold cluster (Au25Sv9) can target on the aberrant oxidative stress in CLL cells to specially inhibit thioredoxin reductase (TrxR) activity, resulting in significant apoptosis. However, the required doses of the gold cluster for inducing apoptosis are high, restricting its potential for further applications. Notably, the most recent studies suggested that CLL cells overexpressed antiapoptotic BCL-2 protein to prevent chemotherapy-induced apoptosis, indicating that BCL-2 could be a promising target for CLL therapy. Regrettably, the nonmitochondrial-targeted Au25Sv9 has little effect on BCL-2. In this study, we successfully screened a modified BADBH3 peptide (B1P) that could antagonize BCL-2 protein in CLL cells. We found that B1P could effectively sensitize MEC-1 cells to a subliminal dose of Au25Sv9. To simplify the treatment regimen, we directly fabricated a gold cluster capped with the B1P peptides by one-step synthesis to integrate the BCL-2 antagonistic activity into the gold the cluster, named BGC. We already found that low doses of BGC could significantly induce more apoptosis in MEC-1 cells than equivalent doses of the Au25Sv9 cluster or B1P peptide alone. Mechanistically, in addition to the inherent inhibitory effect of gold clusters on TrxR activity, BGC could bind to BCL-2 on mitochondria and activate the BCL-2 family-mediated mitochondrial apoptosis cascade more effectively. These results demonstrated that antagonizing the overexpressed BCL-2 in CLL cells, together with inhibiting TrxR simultaneously by a single gold cluster, is a promising strategy for the treatment of CLL cells. This study will provide a paradigm and reference for the development of functionalized gold clusters with rationally designed peptides, and opens up a new opportunity for the treatment of CLL in clinical settings.


Assuntos
Antineoplásicos/farmacologia , Ouro/química , Leucemia Linfocítica Crônica de Células B/patologia , Peptídeos/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Sequência de Aminoácidos , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Leucemia Linfocítica Crônica de Células B/enzimologia , Leucemia Linfocítica Crônica de Células B/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Peptídeos/química , Proteínas Proto-Oncogênicas c-bcl-2/química , Espécies Reativas de Oxigênio/metabolismo , Tiorredoxina Dissulfeto Redutase/antagonistas & inibidores
19.
Proteins ; 89(9): 1205-1215, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33973678

RESUMO

Cecropins form a family of amphipathic α-helical cationic peptides with broad-spectrum antibacterial properties and potent anticancer activity. The emergence of bacteria and cancer cells showing resistance to cationic antimicrobial peptides (CAMPs) has fostered a search for new, more selective and more effective alternatives to CAMPs. With this goal in mind, we looked for cecropin homologs in the genome and transcriptome of the spruce budworm, Choristoneura fumiferana. Not only did we find paralogs of the conventional cationic cecropins (Cfcec+ ), our screening also led to the identification of previously uncharacterized anionic cecropins (Cfcec- ), featuring a poly-l-aspartic acid C-terminus. Comparative peptide analysis indicated that the C-terminal helix of Cfcec- is amphipathic, unlike that of Cfcec+ , which is hydrophobic. Interestingly, molecular dynamics simulations pointed to the lower conformational flexibility of Cfcec- peptides, relative to that of Cfcec+ . Phylogenetic analysis suggests that the evolution of distinct Cfcec+ and Cfcec- peptides may have resulted from an ancient duplication event within the Lepidoptera. Finally, we found that both anionic and cationic cecropins contain a BH3-like motif (G-[KQR]-[HKQNR]-[IV]-[KQR]) that could interact with Bcl-2, a protein involved in apoptosis; this observation is congruent with previous reports indicating that cecropins induce apoptosis. Altogether, our observations suggest that cecropins may provide templates for the development of new anticancer drugs. We also estimated the antibacterial activity of Cfcec-2 and a ∆Cfce-2 peptide as AMPs by testing directly their ability in inhibiting bacterial growth in a disk diffusion assay and their potential for development of novel therapeutics.


Assuntos
Antibacterianos/química , Antineoplásicos/química , Cecropinas/química , Proteínas de Insetos/química , Peptídeos/química , Proteínas Proto-Oncogênicas c-bcl-2/química , Sequência de Aminoácidos , Animais , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Sítios de Ligação , Cecropinas/genética , Cecropinas/metabolismo , Cecropinas/farmacologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Evolução Molecular , Humanos , Interações Hidrofóbicas e Hidrofílicas , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Proteínas de Insetos/farmacologia , Simulação de Dinâmica Molecular , Mariposas/química , Mariposas/fisiologia , Peptídeos/metabolismo , Filogenia , Ligação Proteica , Conformação Proteica em alfa-Hélice , Domínios e Motivos de Interação entre Proteínas , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Eletricidade Estática
20.
J Med Chem ; 64(8): 4903-4912, 2021 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-33797903

RESUMO

Modulating disease-relevant protein-protein interactions (PPIs) using pharmacological tools is a critical step toward the design of novel therapeutic strategies. Over the years, however, targeting PPIs has proven a very challenging task owing to the large interfacial areas. Our recent efforts identified possible novel routes for the design of potent and selective inhibitors of PPIs using a structure-based design of covalent inhibitors targeting Lys residues. In this present study, we report on the design, synthesis, and characterizations of the first Lys-covalent BH3 peptide that has a remarkable affinity and selectivity for hMcl-1 over the closely related hBfl-1 protein. Our structural studies, aided by X-ray crystallography, provide atomic-level details of the inhibitor interactions that can be used to further translate these discoveries into novel generation, Lys-covalent pro-apoptotic agents.


Assuntos
Desenho de Fármacos , Lisina/química , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Fragmentos de Peptídeos/química , Proteínas Proto-Oncogênicas/química , Células A549 , Sequência de Aminoácidos , Sítios de Ligação , Cristalografia por Raios X , Humanos , Cinética , Antígenos de Histocompatibilidade Menor/química , Antígenos de Histocompatibilidade Menor/metabolismo , Simulação de Dinâmica Molecular , Proteína de Sequência 1 de Leucemia de Células Mieloides/antagonistas & inibidores , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Fragmentos de Peptídeos/síntese química , Fragmentos de Peptídeos/farmacologia , Ligação Proteica , Proteínas Proto-Oncogênicas/síntese química , Proteínas Proto-Oncogênicas/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/química , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Regulação para Cima/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...